

PBA-003-1273001

Seat No. -

M. Sc. (ECI) (Sem. III) (CBCS) Examination

November / December - 2018

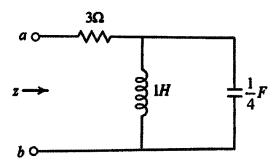
Paper - 9 : Advance Circuit & Network Concepts (New Syllabus)

Faculty Code: 003

Subject Code: 1273001

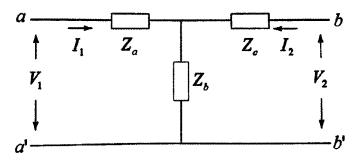
Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70


Instructions: (1) Figures on right hand side indicate marks.

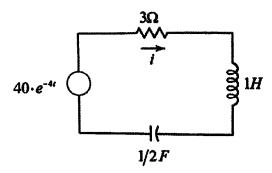
(2) Assume suitable data if necessary.

1 Answer the following: (Any **Seven**)

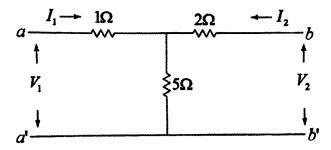

14

- (1) Explain the "Translation in Frequency domain" property of Laplace Transform
- (2) Find Laplace Transform of $(t+2)^2 \cdot e^t$
- (3) Transform the circuit shown in fig. below to the s-domain & determine the Laplace Impedance

- (4) For the given denominator polynomial of a network function, verify the stability of the network by Routh criterion $Q(s) = s^3 + 2s^2 + 8s + 10$
- (5) Define Step & Impulse signal. Draw waveform & write equation of both signals.


(6) Derive Z_{11} and Z_{21} for the given circuit

- (7) Define Low Pass Filter & Band Pass Filter. Draw its attenuation characteristic.
- (8) Use initial & final value theorems to find the initial & final values of f(t) for following function:

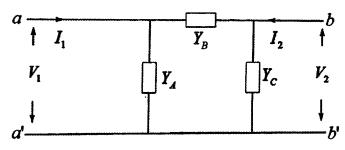

$$F(s) = \frac{4s^2 + 7s + 1}{s(s+1)^2}$$

- (9) Draw the T- and π section circuit for constant k-type Low Pass Filter.
- (10) What is Attenuator & Equalizer? List different types of Attenuator & Equalizer.
- 2 Answer the following: (Any Two)
 - (1) Determine the current 'i' if the circuit is driven by a 7 voltage source as shown in fig. below. The initial value of voltage across the capacitor & the initial current through the inductor both are zero.

- (2) Explain Lattice Phase Equalizer.
- (3) Derive different Y-parameters for a linear two port network.

- **3** Answer the following:
 - (1) Find the transmission parameters for circuit shown below

(2) Explain Band Elimination Filter.


OR

- **3** Answer the following:
 - (1) The driving point impedance of RL network is given as

$$Z(s) = \frac{5(s+1)(s+4)}{s(s+3) + (s+5)}$$

Determine Foster Form-1 for the network.

- (2) Derive equation for characteristic impedance, Z_{0T} 7 for T-network filter. Also prove that $Z_{0T} = \sqrt{Z_{oc} \times Z_{sc}}$
- 4 Answer the following:
 - (1) Derive ABCD parameters in terms of Z-parameters **7** & Y-parameters.
 - (2) Design k-type band pass filter having a design impedance of 500Ω and cut-off frequencies 1 KHz and 10 KHz. Also draw its circuit.
- 5 Answer the following: (Any Two)
 - (1) Find short circuit admittance parameters for the circuit shown below

7

- (2) Explain natural response of RC circuit. 7
- (3) The driving point impedance of an LC network is $Z(s) = \frac{2s^5 + 12s^3 + 16s}{s^4 + 4s^2 + 3}$
 - Determine 1st Cauer form of network.
- (4) Explain Bridged-T Attenuator. 7